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 In general, high sampling rates such as 9 to 16 samples per 

pixel are necessary for producing high quality renderings. 

 Such sampling rates are still too heavy for real-time ray tracing. 

 It is desirable to develop an effective real-time ray tracing 

technique that minimizes the total number of processed rays 

while keeping the image quality.  
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Our Contributions 
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 We propose a selective and adaptive supersampling technique 

for real-time ray tracing that   

1. was designed to offer high sampling rates as effective as 9 to 16 

samples per pixel, 

2. explores both image-space color measures and object-space geometry 

attributes, 

3. enables users to focus computing effort on selectively chosen  

rendering features, and 

4. allows an efficient parallel computation on many-core processors. 
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Basic Idea (Primary Ray Sampling Case Only) 



Observation 
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 In ray tracing, annoying alias artifacts often occur due to 

insufficient sampling of various rendering features. 
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Our Attempt 
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 Detect such problematic pixel regions on the fly, and shoot 

more sampling rays to them selectively and adaptively. 
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Design Goal (Pr. Ray Sampling Case Only) 
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 Distribute extra sample rays to the pixel region if 

 an object silhouette curve crosses it (object-space measure),  or    

 a color disparity with adjacent pixels is found (image-space measure). 

 

 Design a selective sampling mechanism that allocates more of the 
very limited computing time to possibly more troublesome rendering 
features. 

 

 Achieve high sampling rates that are as effective as 9 to 16 samples 
per pixel. 

 

 Design a simple sampling algorithm that is well suited to highly 
parallel, multithreaded, many-core GPUs. 

 In particular, minimize data-dependent, unpredictable control flows. 
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Our Solution 
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 Get the two pixel attributes at pixel centers  

       by tracing one ray per pixel. 

 Geometry attribute: object id. number (ObjectID) 

 Color reference: shaded color 

   

 Subdivide each image pixel into four subpixels,   

       and independently perform two simple  

       tests against each subpixel  

       to see if its region needs extra sampling. 

 

 Shoot four extra rays per problematic subpixel,  

      and blend the results into the pixel color. 
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Test I: Geometry Attribute Comparison 
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 For each subpixel, compare its ObjectID 

    respectively with those of three adjacent pixels.  
 

 When there is at least one disparity 

 Two extreme cases 

 

 

 

 

 

 We always assume the pessimistic case to achieve a simple control flow, 

taking four extra samples. 
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An optimistic case A pessimistic case 

Do not need  

   extra samples! 

Do need  

   extra samples! 



Test 2: Color Reference Comparison 
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 Threshold τ for color reference comparison 

 τ ∈ [0, 1] is set properly as a result of the geometry attribute comparison. 

     (will be explained shortly) 

 

 Contrast-based disparity test [Mitchell 1987] 

 For the four color references, compute the contrast values. 

 

 

 Use the following threshold vector for a disparity check. 

 

 

 When τ is 0.3, the vector roughly becomes Mitchell’s default (0.4, 0.3, 0.6). 
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Three-Stage Supersampling Algorithm 
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[Stage 1] Per-pixel attribute presampling 

 Build three 2D arrays by presampling image pixels at their centers by 
performing ray tracing. 

 Shaded color image 

 Stores ray-traced, shaded colors. 

 Functions as a color buffer to which extra subsampled colors are 
accumulated. 

 

 Geometry attribute map 

 Stores the IDs of objects that were hit by the primary rays. 

 

 Color reference map 

 Stores pixel values that are referred to when a test for color disparity is 
performed.  

 Our current implementation uses the shaded colors for color reference. 
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[Stage 2] Two-step subpixel test 

 Determine whether and where to take extra sample rays based on the 

pixel attributes in the two maps. 

① Choose a threshold τ through the geometry attribute comparison. 

 If there is at least one mismatch,  

      assign a user-defined threshold τoid to τ. 

 Otherwise, assign another user-controlled  

       threshold τcol  to τ.  

 

② Perform the color reference comparison using τ. 

 If a color disparity is found, the subpixel is  

      considered as problematic and marked as active. 

 

 By using a stricter value of τoid, we can selectively focus computing 

resources more on reducing jagged edges! 
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τcol 
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[Stage 3] Subpixel sampling and color summing 

 Take four extra samples for each active subpixel through ray tracing, and 

sum the shaded colors with those of the inactive subpixels.  

 

 For color summing 

 Multiply a weight (# of inactive subpixels)/4  to each pixel in the shaded 

color image. 

 Simply accumulate the subsampled extra colors to the shaded color 

image, multiplied with a weight of 1/16. 
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Four examples of adaptive sampling 



Selective Supersampling Example 
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One sample per pixel 

Problematic subpixels 

After selective supersampling 

# of problematic subpixels 
   Red: 1, Green: 2, Blue: 3, White: 4 



Extension of the Basic Idea 



Considering More Geometry Attributes 
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 Three classes of pixel attributes 
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Collection point Attribute Threshold 

At pixel center Color Reference τcol 

At primary ray 

hit point 

Object ID τpoid 

Surface Normal τpsn 

Shadow Count τpsc 

Texture Existence τpte 

At secondary ray 

hit point 

Object ID τsoid 

Surface Normal τssn 

Shadow Count τssc 

Texture Existence τste 

For detecting such an edge formed by polygons that meet at an acute angle 

For shadow antialiasing (records the no. of light sources invisible from the intersection point) 

For texture antialiasing (TRUE if and only if a texture is applied to the intersection point) 

For reducing artifacts in the secondary  

rendering effects (reflection/refraction) 

User-controlled selective supersampling parameters 



Item-to-Item Disparity Test 

19 

 Object ID 

 YES iff the IDs are different. 

 

 Surface Normal 

 YES iff the cross product is less than a preset value. 

 

 Shadow Count 

 YES iff the counts are different. 

 

 Texture Existence 

 YES iff the current subpixel’s attribute is TRUE. 
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17 to 24%  



Extended Geometry Attribute Comparison 
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 A subpixel is called possibly problematic if discordance is 

found for at least one geometry attribute.  

 The smallest value of the thresholds set to the disagreeing attributes is 

used in the color reference comparison. 

 When no discordance is found, τcol  is used as default. 
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Test Scene 

Textures are applied to all, diffusive objects except the only specular, floor object. 

ObjectID (Pr.) Surface Normal (Pr.) Shadow Count (Pr.) Texture Existence (Pr.) 

ObjectID (Sec.) Surface Normal (Sec.) Shadow Count (Sec.) Texture Existence (Sec.) 



Extended Geometry Attribute Comparison 
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 A subpixel is called possibly problematic if discordance is 

found for at least one geometry attribute.  

 The smallest value of the thresholds set to the disagreeing attributes is 

used in the color reference comparison. 

 When no discordance is found, τcol  is used as default. 
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Test Scene 

Textures are applied to all, diffusive objects except the only specular, floor object. 

ObjectID (Pr.) Surface Normal (Pr.) Shadow Count (Pr.) Texture Existence (Pr.) 

ObjectID (Sec.) Surface Normal (Sec.) Shadow Count (Sec.) Texture Existence (Sec.) 



Extended Geometry Attribute Comparison 
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 A subpixel is called possibly problematic if discordance is 

found for at least one geometry attribute.  

 The smallest value of the thresholds set to the disagreeing attributes is 

used in the color reference comparison. 

 When no discordance is found, τcol  is used as default. 

 

Selective and Adaptive Supersampling for Real-Time Ray Tracer by B. Jin, I. Ihm et al. 

Test Scene 

Textures are applied to all, diffusive objects except the only specular, floor object. 

ObjectID (Pr.) Surface Normal (Pr.) Shadow Count (Pr.) Texture Existence (Pr.) 

ObjectID (Sec.) Surface Normal (Sec.) Shadow Count (Sec.) Texture Existence (Sec.) 



Selective Supersampling Examples 
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 A user can distribute ray samples to rendering elements 

according to priorities by selectively setting the nine thresholds.  
 

 If shadows are important, use rigorous, i.e., small τpsc (and τssc). 

 If they are really important, set them to zero. 
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One sample per pixel Object ID (Pr. ) 
τpoid = 0.0 

Surface Normal (Pr. ) 
τpsn = 0.05 

Shadow Count (Pr. ) 
τpsc = 0.05 

All except texture  
existence (Sec. ) 
τsoid =τssn = τssc = 0.05 

 
 



Single- vs. Multiple-Valued Thresholds 
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 Color measure only 

 

 

 

 

 

 Multiple measures 
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Problematic subpixels Sample Ratio = 22.62% 
PSNR = 46.20 

Sample Ratio = 16.09% 
PSNR = 44.17 

Sample Ratio = 13.76% 
PSNR = 42.96 

Sample Ratio = 11.86% 
PSNR = 41.21 

Problematic subpixels Sample Ratio = 15.75% 
PSNR = 46.17 

Sample Ratio = 13.06% 
PSNR = 45.75 

Sample Ratio = 12.20% 
PSNR = 45.46 

Sample Ratio = 11.83% 
PSNR = 45.20 

τcol = 0.1 τcol = 0.2 τcol = 0.3 τcol = 0.4 

τcol = 0.1 τcol = 0.2 τcol = 0.3 τcol = 0.4 



Implementation  

on the GPU Architecture 



Efforts towards Efficiency 
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 Launch a kernel with an enough number of concurrent threads. 

 Pixels in the first stage, and subpixels in the next two stages becomes 
threads. 

 Exploit the fast registers and shared memory, and minimize use 
of the expensive off-chip memories. 

 Store the on-the-fly active subpixel information in shared memory. 

 Perform the color sum operation in shared memory. 

 Exploit spatial and temporal locality in data access. 

 Store the color reference map, geometry attribute map, and active 
subpixel buffer in texture memory. 

 Use a simple control structure that minimizes unpredictable, 
data-dependent branches. 

 Subdivide each image pixel into 4 subpixels to which computations are 
performed independently. 
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Implementation on the CUDA Architecture 
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 Three computation kernels 

 Presampler kernel  

 ActSubPixDetector kernel  

 ExtraSampler kernel  

 

 

 Implementation details are given 

    in the paper. 
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ActSubPixBuffer in global memory

ShadedColorImage

in global memory

thread block for ExtraSampler kernel 

Color Summing 

in shared memory

ActiveOnes 

in shared memory 

Active Subpixel Packing 

ActSubPixBuffer in texture memory

Active Subpixel Marking

                 thread block 

for ActSubPixDetector kernel 

              thread block 

for Presampler kernel 



Experimental Results 



Implementations 
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 Tested on an NVIDIA GeForce GTX 280 GPU 

 16,384 registers and 16 Kbytes of shared memory per multiprocessor 

 

 Our ray tracer with selective and adaptive supersampling 

 The short stack method [Horn et al. 2007] was used for kd-tree traversal. 

 The kernels consumed up to 58 registers, limiting the total # of possible 
threads in a block to 282. 

 7 stack elements per thread (8 bytes each) were allocated in shared memory. 

 

 A test ray tracer with fixed-density supersampling 

 Built by slightly modifying our ray tracer. 

 A similar shared memory technique was applied for an efficient GPU 
implementation. 

 The overheads were measured in the range of 8.68 to 10.12 for the case 
of 16 fixed samples per pixel. 
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Experimental Results 

30 Selective and Adaptive Supersampling for Real-Time Ray Tracer by B. Jin, I. Ihm et al. 

Bathroom(268K) Problematic subpixels 

Conference(190K) 
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44.03(24.6%) 43.47 
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PSNR:  compared with 256 fixed sampling 

Improvement w.r.t. Fixed 9 

Overhead w.r.t. Fixed 1 
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Problematic subpixels Room(117K) 

Kitchen(101K) 
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For the Four Test Scenes, 
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 Compared to the 9 fixed density sampling 

 2 to 3 times faster (taking only around 17 to 24% of samples).  

 PSNR values falling between those of the 9 and 16 fixed samplings. 
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Ours 9 fixed samples 16 fixed samples 



Problem with Highly Detailed Textures 
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Fairy Forest(174K) τα = 0.3 τα = 0.6 Fairy focused τα = 0.1 

47.22 
44.11(106.5%) 43.88 

39.92(28.6%) 39.19 38.61(19.5%) 37.8(16.5%) 
36.05(13.5%) 35 
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10.68(1.00) 

0

5

10

15

20

25

30

35

40

45

50

Fixed 16 Ours (τα = 0.1)  Fixed 9 Ours (τα = 0.3)  Fixed 4 Ours (τα = 0.6)  Ours (τα = 1.0)‡  Ours* Fixed 1

PSNR FPS

Fairy Forest uses highly detailed textures.  
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 Stricter thresholds had to be used to achieve a high PSNR values. 

 Ours (τα = 0.1): 44.11 (1.28 fps) 

 Fixed 9: 43.88 (1.86 fps) 

 
 

 

 Directing more ray samples to perceptually more visible artifacts 

 Ours (τα = 0.6): 38.61 (3.75 fps) 
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Ours 9 fixed samples 

τα  = τcol , τpte , τste 



 When the viewer’s attention is focused on the fairy only 

 Consider only the fairy, grass, and dragonfly objects. 

 Ours:  5.02 fps 

 Fixed 9: 1.86 fps 

 

 

 

 

 Solution to the texture aliasing problem 

 Use a low-pass filtered textures. :-) 

 Use a known texture filtering method like mip-mapping. 

 Develop a filtering scheme for our supersampling technique. 
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Ours 9 fixed samples 



Bilinear Filtering for Texture Antialiasing 
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 Idea  

 In the original implementation, the nearest-neighbor 

filter was applied to get the colors of inactive subpixels. 

 A bilinear filtering scheme could reduce texture aliases 

when highly detailed textures are applied. 

 Our preliminary test shows 

 only a little cost increase (almost the same fps), and  

 a slight noise reduction (PSNS 38.61  41.09 for Fairy 

Forest). 
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1

Ours (bilinear) Ours (nearest) Fixed (4 rays/pixel) Fixed (9 rays/pixel) 

9/16 3/16

3/16 1/16



Conclusion 



To Wrap Up 
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 For efficient ray tracing, it is important to minimize the total 

number of processed rays while maintaining the image quality. 

 

 We have presented a selective and adaptive supersampling 

technique suitable for real-time ray tracing on many-core 

processors. 

 

 The presented technique will also be easily mapped on the 

upcoming many-core processors, such as the Intel Larrabee 

processor. 
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Thank you! 
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