
Selective and Adaptive Supersampling

for Real-Time Ray Tracer

Bongjun Jin†, Insung Ihm†, Byungjoon Chang†
Chanmin Park‡, Wonjong Lee‡, and Seokyoon Jung‡

†Department of Computer Science and Engineering, Sogang University, Korea

‡System Architecture Lab., Samsung Electronics, Korea

Contents

2

 Backgrounds

 Our contributions

 Previous work

 Basic idea

 Extension of the basic idea

 Experimental results

 Conclusion

Selective and Adaptive Supersampling for Real-Time Ray Tracer by B. Jin, I. Ihm et al.

Backgrounds

3

 In general, high sampling rates such as 9 to 16 samples per

pixel are necessary for producing high quality renderings.

 Such sampling rates are still too heavy for real-time ray tracing.

 It is desirable to develop an effective real-time ray tracing

technique that minimizes the total number of processed rays

while keeping the image quality.

Selective and Adaptive Supersampling for Real-Time Ray Tracer by B. Jin, I. Ihm et al.

One sample per pixel 9 samples per pixel 16 samples per pixel

Our Contributions

4

 We propose a selective and adaptive supersampling technique

for real-time ray tracing that

1. was designed to offer high sampling rates as effective as 9 to 16

samples per pixel,

2. explores both image-space color measures and object-space geometry

attributes,

3. enables users to focus computing effort on selectively chosen

rendering features, and

4. allows an efficient parallel computation on many-core processors.

Selective and Adaptive Supersampling for Real-Time Ray Tracer by B. Jin, I. Ihm et al.

Previous Work

5

 CROW, F. 1977. The aliasing problem in computer-generated shaded images. Communications of the
ACM 20, 11, 799–805.

 BOLIN, M., AND MEYER, G. 1998. A perceptually based adaptive sampling algorithm. In Proceedings
of SIGGRAPH 1998, 299–309.

 GENETTI, J., GORDON, D., AND WILLIAMS, G. 1998. Adaptive supersampling in object space using
pyramidal rays. Computer Graphics Forum 17, 1, 29–54.

 HECKBERT, P., AND HANRAHAN, P. 1984. Beam tracing polygonal objects. In Proceedings of
SIGGRAPH 1984, 119–127.

 LONGHURST, P., DEBATTISTA, K., GILLIBRAND, R., AND CHALMERS, A. 2005. Analytic
antialiasing for selective high fidelity rendering. In Proceedings of SIBGRAPI 2005, 359–366.

 MITCHELL, D. 1987. Generating antialiased images at low sampling densities. In Proceedings of
SIGGRAPH 1987, 65–72.

 OHTA, M., AND MAEKAWA, M. 1990. Ray-bound tracing for perfect and efficient anti-aliasing. The
Visual Computer 6, 3,125–133.

 THOMAS, D., NETRAVALI, A., AND FOX, D. 1989. Antialiased ray tracing with covers. Computer
Graphics Forum 8, 4, 325–336.

 WHITTED, T. 1980. An improved illumination model for shaded display. Communications of the ACM
23, 6, 343–349.

 While effective, they, in their current forms, are not best suited for effective
implementation on the computing architecture of today’s many-core processors
such as GPU.

Selective and Adaptive Supersampling for Real-Time Ray Tracer by B. Jin, I. Ihm et al.

Basic Idea (Primary Ray Sampling Case Only)

Observation

7

 In ray tracing, annoying alias artifacts often occur due to

insufficient sampling of various rendering features.

Selective and Adaptive Supersampling for Real-Time Ray Tracer by B. Jin, I. Ihm et al.

Primary ray sampling Shadow ray sampling

Reflection ray
sampling

Texture sampling

Reflection ray
sampling(object)

Reflection ray
sampling(shadow)

Reflection ray
sampling(texture)

Scene

Our Attempt

8

 Detect such problematic pixel regions on the fly, and shoot

more sampling rays to them selectively and adaptively.

Selective and Adaptive Supersampling for Real-Time Ray Tracer by B. Jin, I. Ihm et al.

Primary ray sampling Shadow ray sampling

Reflection ray
sampling

Texture sampling

Reflection ray
sampling(object)

Reflection ray
 sampling(shadow)

Reflection ray
sampling(texture)

Scene

Design Goal (Pr. Ray Sampling Case Only)

9

 Distribute extra sample rays to the pixel region if

 an object silhouette curve crosses it (object-space measure), or

 a color disparity with adjacent pixels is found (image-space measure).

 Design a selective sampling mechanism that allocates more of the
very limited computing time to possibly more troublesome rendering
features.

 Achieve high sampling rates that are as effective as 9 to 16 samples
per pixel.

 Design a simple sampling algorithm that is well suited to highly
parallel, multithreaded, many-core GPUs.

 In particular, minimize data-dependent, unpredictable control flows.

Selective and Adaptive Supersampling for Real-Time Ray Tracer by B. Jin, I. Ihm et al.

Our Solution

10

 Get the two pixel attributes at pixel centers

 by tracing one ray per pixel.

 Geometry attribute: object id. number (ObjectID)

 Color reference: shaded color

 Subdivide each image pixel into four subpixels,

 and independently perform two simple

 tests against each subpixel

 to see if its region needs extra sampling.

 Shoot four extra rays per problematic subpixel,

 and blend the results into the pixel color.

Selective and Adaptive Supersampling for Real-Time Ray Tracer by B. Jin, I. Ihm et al.

Object 1

Object 2

Test I: Geometry Attribute Comparison

11

 For each subpixel, compare its ObjectID

 respectively with those of three adjacent pixels.

 When there is at least one disparity

 Two extreme cases

 We always assume the pessimistic case to achieve a simple control flow,

taking four extra samples.

Selective and Adaptive Supersampling for Real-Time Ray Tracer by B. Jin, I. Ihm et al.

An optimistic case A pessimistic case

Do not need

 extra samples!

Do need

 extra samples!

Test 2: Color Reference Comparison

12

 Threshold τ for color reference comparison

 τ ∈ [0, 1] is set properly as a result of the geometry attribute comparison.

 (will be explained shortly)

 Contrast-based disparity test [Mitchell 1987]

 For the four color references, compute the contrast values.

 Use the following threshold vector for a disparity check.

 When τ is 0.3, the vector roughly becomes Mitchell’s default (0.4, 0.3, 0.6).

Selective and Adaptive Supersampling for Real-Time Ray Tracer by B. Jin, I. Ihm et al.

Three-Stage Supersampling Algorithm

13

[Stage 1] Per-pixel attribute presampling

 Build three 2D arrays by presampling image pixels at their centers by
performing ray tracing.

 Shaded color image

 Stores ray-traced, shaded colors.

 Functions as a color buffer to which extra subsampled colors are
accumulated.

 Geometry attribute map

 Stores the IDs of objects that were hit by the primary rays.

 Color reference map

 Stores pixel values that are referred to when a test for color disparity is
performed.

 Our current implementation uses the shaded colors for color reference.

Selective and Adaptive Supersampling for Real-Time Ray Tracer by B. Jin, I. Ihm et al.

Object 1

Object 2

14

[Stage 2] Two-step subpixel test

 Determine whether and where to take extra sample rays based on the

pixel attributes in the two maps.

① Choose a threshold τ through the geometry attribute comparison.

 If there is at least one mismatch,

 assign a user-defined threshold τoid to τ.

 Otherwise, assign another user-controlled

 threshold τcol to τ.

② Perform the color reference comparison using τ.

 If a color disparity is found, the subpixel is

 considered as problematic and marked as active.

 By using a stricter value of τoid, we can selectively focus computing

resources more on reducing jagged edges!

Selective and Adaptive Supersampling for Real-Time Ray Tracer by B. Jin, I. Ihm et al.

τcol

τoid

15

[Stage 3] Subpixel sampling and color summing

 Take four extra samples for each active subpixel through ray tracing, and

sum the shaded colors with those of the inactive subpixels.

 For color summing

 Multiply a weight (# of inactive subpixels)/4 to each pixel in the shaded

color image.

 Simply accumulate the subsampled extra colors to the shaded color

image, multiplied with a weight of 1/16.

Selective and Adaptive Supersampling for Real-Time Ray Tracer by B. Jin, I. Ihm et al.

Four examples of adaptive sampling

Selective Supersampling Example

16 Selective and Adaptive Supersampling for Real-Time Ray Tracer by B. Jin, I. Ihm et al.

One sample per pixel

Problematic subpixels

After selective supersampling

of problematic subpixels
 Red: 1, Green: 2, Blue: 3, White: 4

Extension of the Basic Idea

Considering More Geometry Attributes

18

 Three classes of pixel attributes

Selective and Adaptive Supersampling for Real-Time Ray Tracer by B. Jin, I. Ihm et al.

Collection point Attribute Threshold

At pixel center Color Reference τcol

At primary ray

hit point

Object ID τpoid

Surface Normal τpsn

Shadow Count τpsc

Texture Existence τpte

At secondary ray

hit point

Object ID τsoid

Surface Normal τssn

Shadow Count τssc

Texture Existence τste

For detecting such an edge formed by polygons that meet at an acute angle

For shadow antialiasing (records the no. of light sources invisible from the intersection point)

For texture antialiasing (TRUE if and only if a texture is applied to the intersection point)

For reducing artifacts in the secondary

rendering effects (reflection/refraction)

User-controlled selective supersampling parameters

Item-to-Item Disparity Test

19

 Object ID

 YES iff the IDs are different.

 Surface Normal

 YES iff the cross product is less than a preset value.

 Shadow Count

 YES iff the counts are different.

 Texture Existence

 YES iff the current subpixel’s attribute is TRUE.

Selective and Adaptive Supersampling for Real-Time Ray Tracer by B. Jin, I. Ihm et al.

17 to 24%

Extended Geometry Attribute Comparison

20

 A subpixel is called possibly problematic if discordance is

found for at least one geometry attribute.

 The smallest value of the thresholds set to the disagreeing attributes is

used in the color reference comparison.

 When no discordance is found, τcol is used as default.

Selective and Adaptive Supersampling for Real-Time Ray Tracer by B. Jin, I. Ihm et al.

Test Scene

Textures are applied to all, diffusive objects except the only specular, floor object.

ObjectID (Pr.) Surface Normal (Pr.) Shadow Count (Pr.) Texture Existence (Pr.)

ObjectID (Sec.) Surface Normal (Sec.) Shadow Count (Sec.) Texture Existence (Sec.)

Extended Geometry Attribute Comparison

21

 A subpixel is called possibly problematic if discordance is

found for at least one geometry attribute.

 The smallest value of the thresholds set to the disagreeing attributes is

used in the color reference comparison.

 When no discordance is found, τcol is used as default.

Selective and Adaptive Supersampling for Real-Time Ray Tracer by B. Jin, I. Ihm et al.

Test Scene

Textures are applied to all, diffusive objects except the only specular, floor object.

ObjectID (Pr.) Surface Normal (Pr.) Shadow Count (Pr.) Texture Existence (Pr.)

ObjectID (Sec.) Surface Normal (Sec.) Shadow Count (Sec.) Texture Existence (Sec.)

Extended Geometry Attribute Comparison

22

 A subpixel is called possibly problematic if discordance is

found for at least one geometry attribute.

 The smallest value of the thresholds set to the disagreeing attributes is

used in the color reference comparison.

 When no discordance is found, τcol is used as default.

Selective and Adaptive Supersampling for Real-Time Ray Tracer by B. Jin, I. Ihm et al.

Test Scene

Textures are applied to all, diffusive objects except the only specular, floor object.

ObjectID (Pr.) Surface Normal (Pr.) Shadow Count (Pr.) Texture Existence (Pr.)

ObjectID (Sec.) Surface Normal (Sec.) Shadow Count (Sec.) Texture Existence (Sec.)

Selective Supersampling Examples

23

 A user can distribute ray samples to rendering elements

according to priorities by selectively setting the nine thresholds.

 If shadows are important, use rigorous, i.e., small τpsc (and τssc).

 If they are really important, set them to zero.

Selective and Adaptive Supersampling for Real-Time Ray Tracer by B. Jin, I. Ihm et al.

One sample per pixel Object ID (Pr.)
τpoid = 0.0

Surface Normal (Pr.)
τpsn = 0.05

Shadow Count (Pr.)
τpsc = 0.05

All except texture
existence (Sec.)
τsoid =τssn = τssc = 0.05

Single- vs. Multiple-Valued Thresholds

24

 Color measure only

 Multiple measures

Selective and Adaptive Supersampling for Real-Time Ray Tracer by B. Jin, I. Ihm et al.

Problematic subpixels Sample Ratio = 22.62%
PSNR = 46.20

Sample Ratio = 16.09%
PSNR = 44.17

Sample Ratio = 13.76%
PSNR = 42.96

Sample Ratio = 11.86%
PSNR = 41.21

Problematic subpixels Sample Ratio = 15.75%
PSNR = 46.17

Sample Ratio = 13.06%
PSNR = 45.75

Sample Ratio = 12.20%
PSNR = 45.46

Sample Ratio = 11.83%
PSNR = 45.20

τcol = 0.1 τcol = 0.2 τcol = 0.3 τcol = 0.4

τcol = 0.1 τcol = 0.2 τcol = 0.3 τcol = 0.4

Implementation

on the GPU Architecture

Efforts towards Efficiency

26

 Launch a kernel with an enough number of concurrent threads.

 Pixels in the first stage, and subpixels in the next two stages becomes
threads.

 Exploit the fast registers and shared memory, and minimize use
of the expensive off-chip memories.

 Store the on-the-fly active subpixel information in shared memory.

 Perform the color sum operation in shared memory.

 Exploit spatial and temporal locality in data access.

 Store the color reference map, geometry attribute map, and active
subpixel buffer in texture memory.

 Use a simple control structure that minimizes unpredictable,
data-dependent branches.

 Subdivide each image pixel into 4 subpixels to which computations are
performed independently.

Selective and Adaptive Supersampling for Real-Time Ray Tracer by B. Jin, I. Ihm et al.

Implementation on the CUDA Architecture

27

 Three computation kernels

 Presampler kernel

 ActSubPixDetector kernel

 ExtraSampler kernel

 Implementation details are given

 in the paper.

Selective and Adaptive Supersampling for Real-Time Ray Tracer by B. Jin, I. Ihm et al.

a aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

a

a a

a

a

a

a

a

a

a

a a

a

aa

aaa

a

aa

aa

aa

ActSubPixBuffer in global memory

ShadedColorImage

in global memory

thread block for ExtraSampler kernel

Color Summing

in shared memory

ActiveOnes

in shared memory

Active Subpixel Packing

ActSubPixBuffer in texture memory

Active Subpixel Marking

 thread block

for ActSubPixDetector kernel

 thread block

for Presampler kernel

Experimental Results

Implementations

29

 Tested on an NVIDIA GeForce GTX 280 GPU

 16,384 registers and 16 Kbytes of shared memory per multiprocessor

 Our ray tracer with selective and adaptive supersampling

 The short stack method [Horn et al. 2007] was used for kd-tree traversal.

 The kernels consumed up to 58 registers, limiting the total # of possible
threads in a block to 282.

 7 stack elements per thread (8 bytes each) were allocated in shared memory.

 A test ray tracer with fixed-density supersampling

 Built by slightly modifying our ray tracer.

 A similar shared memory technique was applied for an efficient GPU
implementation.

 The overheads were measured in the range of 8.68 to 10.12 for the case
of 16 fixed samples per pixel.

Selective and Adaptive Supersampling for Real-Time Ray Tracer by B. Jin, I. Ihm et al.

Experimental Results

30 Selective and Adaptive Supersampling for Real-Time Ray Tracer by B. Jin, I. Ihm et al.

Bathroom(268K) Problematic subpixels

Conference(190K)

46.35
44.03(24.6%) 43.47

39.36

35.06

0.79(8.68) 2.14(3.22) 1.23(5.62) 2.36(2.92)

6.89(1.00)

0

5

10

15

20

25

30

35

40

45

50

Fixed16 Ours Fixed9 Fixed4 Fixed 1

Problematic subpixels

47.43 46.67(19.8%)
44.48

40.54

36.43

1.39(9.54)
4.58(2.88)

2.28(5.81)
4.52(2.92)

13.23(1.00)

0

5

10

15

20

25

30

35

40

45

50

Fixed16 Ours Fixed9 Fixed4 Fixed 1

PSNR FPS

Resolution: 1024x1024

Fixed n: n fixed samples per pixel

PSNR: compared with 256 fixed sampling

Improvement w.r.t. Fixed 9

Overhead w.r.t. Fixed 1

31 Selective and Adaptive Supersampling for Real-Time Ray Tracer by B. Jin, I. Ihm et al.

Problematic subpixels Room(117K)

Kitchen(101K)

47.61 44.56(17.4%) 44.31

39.76
35.98

1.19(9.96)

5.72(2.07)
1.92(6.15)

3.92(3.02)

11.83(1.00)

0

5

10

15

20

25

30

35

40

45

50

Fixed16 Ours Fixed9 Fixed4 Fixed 1

46.78
44.16(22.4%) 43.85

39.72

35.58

1.24(10.12)
4.46(2.81)

2.01(6.22)
4.09(3.07)

12.53(1.00)

0

5

10

15

20

25

30

35

40

45

50

Fixed16 Ours Fixed9 Fixed4 Fixed 1

PSNR FPS

Problematic subpixels

Resolution: 1024x1024

Fixed n: n fixed samples per pixel

PSNR: compared with 256 fixed sampling

Improvement w.r.t. Fixed 9

Overhead w.r.t. Fixed 1

For the Four Test Scenes,

32

 Compared to the 9 fixed density sampling

 2 to 3 times faster (taking only around 17 to 24% of samples).

 PSNR values falling between those of the 9 and 16 fixed samplings.

Selective and Adaptive Supersampling for Real-Time Ray Tracer by B. Jin, I. Ihm et al.

Ours 9 fixed samples 16 fixed samples

Problem with Highly Detailed Textures

33 Selective and Adaptive Supersampling for Real-Time Ray Tracer by B. Jin, I. Ihm et al.

Fairy Forest(174K) τα = 0.3 τα = 0.6 Fairy focused τα = 0.1

47.22
44.11(106.5%) 43.88

39.92(28.6%) 39.19 38.61(19.5%) 37.8(16.5%)
36.05(13.5%) 35

1.16(9.20) 1.28(8.34) 1.86(5.74) 2.82(3.78) 3.68(2.90) 3.75(2.84) 4.51(2.36) 5.02(2.12)

10.68(1.00)

0

5

10

15

20

25

30

35

40

45

50

Fixed 16 Ours (τα = 0.1) Fixed 9 Ours (τα = 0.3) Fixed 4 Ours (τα = 0.6) Ours (τα = 1.0)‡ Ours* Fixed 1

PSNR FPS

Fairy Forest uses highly detailed textures.

34

 Stricter thresholds had to be used to achieve a high PSNR values.

 Ours (τα = 0.1): 44.11 (1.28 fps)

 Fixed 9: 43.88 (1.86 fps)

 Directing more ray samples to perceptually more visible artifacts

 Ours (τα = 0.6): 38.61 (3.75 fps)

Selective and Adaptive Supersampling for Real-Time Ray Tracer by B. Jin, I. Ihm et al.

Ours 9 fixed samples

τα = τcol , τpte , τste

 When the viewer’s attention is focused on the fairy only

 Consider only the fairy, grass, and dragonfly objects.

 Ours: 5.02 fps

 Fixed 9: 1.86 fps

 Solution to the texture aliasing problem

 Use a low-pass filtered textures. :-)

 Use a known texture filtering method like mip-mapping.

 Develop a filtering scheme for our supersampling technique.

35 Selective and Adaptive Supersampling for Real-Time Ray Tracer by B. Jin, I. Ihm et al.

Ours 9 fixed samples

Bilinear Filtering for Texture Antialiasing

36

 Idea

 In the original implementation, the nearest-neighbor

filter was applied to get the colors of inactive subpixels.

 A bilinear filtering scheme could reduce texture aliases

when highly detailed textures are applied.

 Our preliminary test shows

 only a little cost increase (almost the same fps), and

 a slight noise reduction (PSNS 38.61 41.09 for Fairy

Forest).

Selective and Adaptive Supersampling for Real-Time Ray Tracer by B. Jin, I. Ihm et al.

1

Ours (bilinear) Ours (nearest) Fixed (4 rays/pixel) Fixed (9 rays/pixel)

9/16 3/16

3/16 1/16

Conclusion

To Wrap Up

38

 For efficient ray tracing, it is important to minimize the total

number of processed rays while maintaining the image quality.

 We have presented a selective and adaptive supersampling

technique suitable for real-time ray tracing on many-core

processors.

 The presented technique will also be easily mapped on the

upcoming many-core processors, such as the Intel Larrabee

processor.

Selective and Adaptive Supersampling for Real-Time Ray Tracer by B. Jin, I. Ihm et al.

Thank you!

39 Selective and Adaptive Supersampling for Real-Time Ray Tracer by B. Jin, I. Ihm et al.

